Concrete Model Checking with Abstract
Matching and Refinement

Corina S. Pisireanu!, Radek Peldnek*?, and Willem Visser!

! NASA Ames Research Center
2 Masaryk University Brno, Czech Republic

Abstract. We propose an abstraction-based model checking method
which relies on refinement of an under-approximation of the feasible be-
haviors of the system under analysis. The method preserves errors to
safety properties, since all analyzed behaviors are feasible by definition.
The method does not require an abstract transition relation to be gener-
ated, but instead executes the concrete transitions while storing abstract
versions of the concrete states, as specified by a set of abstraction predi-
cates. For each explored transition, the method checks, with the help of
a theorem prover, whether there is any loss of precision introduced by
abstraction. The results of these checks are used to decide termination
or to refine the abstraction, by generating new abstraction predicates. If
the (possibly infinite) concrete system under analysis has a finite bisim-
ulation quotient, then the method is guaranteed to eventually explore
an equivalent finite bisimilar structure. We illustrate the application of
the approach for checking concurrent programs. We also show how a
lightweight variant can be used for efficient software testing.

1 Introduction

Over the last few years, model checking based on abstraction-refinement has
become a popular technique for the analysis of software. In particular the ab-
straction technique of choice is a property preserving over-approximation called
predicate abstraction [9] and the refinement removes spurious behavior based on
automatically analyzing abstract counter-examples. This approach is often re-
ferred to as CEGAR (counter-example guided automated refinement) and forms
the basis of some of the most popular software model checkers [1,2,12]. Fur-
thermore, a strength of model checking is its ability to automate the detection
of subtle errors and to produce traces that exhibit those errors. However, over-
approximation based abstraction techniques are not particularly well suited for
this, since the detected defects may be spurious due to the over-approximation
- hence the need for refinement. We propose an alternative approach based on
refinement of under-approximations, which effectively preserves the defect de-
tection ability of model checking in the presence of aggressive abstractions.

* Partially supported by GA CR grant no. 201/03/0509

The technique uses a novel combination of (explicit state) model checking,
predicate abstraction and automated refinement to efficiently analyze increas-
ing portions of the feasible behavior of a system. At each step, either an error
is found, we are guaranteed no error exists, or the abstraction is refined. More
precisely, the proposed model checking technique traverses the concrete transi-
tions of the system and for each explored concrete state, it stores an abstract
version of the state. The abstract state, computed by predicate abstraction, is
used to determine whether the model checker’s search should continue or back-
track (if the abstract state has been visited before). This effectively explores an
under-approximation of the feasible behavior of the analyzed system. Hence all
counter-examples to safety properties are preserved.

Refinement uses weakest precondition calculations to check, with the help
of a theorem prover, whether the abstraction introduces any loss of precision
with respect to each explored transition. If there is no loss of precision due
to abstraction (we say that the abstraction is ezact) the search stops and we
conclude that the property holds. Otherwise, the results from the failed checks
are used to refine the abstraction and the whole verification process is repeated
anew. In general, the iterative refinement may not terminate. However, if a finite
bisimulation quotient [14] exists for the system under analysis, then the proposed
approach is guaranteed to eventually explore a finite structure that is bisimilar
to the original system.

The technique can also be used in a lightweight manner, without a theorem
prover, i.e. the refinement guided by the exactness checks is replaced with refine-
ment based on syntactic substitutions [16] or heuristic refinement. The proposed
technique can be used for systematic testing, as it examines increasing portions
of the system under analysis. In fact, our method extends existing approaches to
testing that use abstraction mappings [10, 23], by adding support for automated
abstraction refinement.

To the best of our knowledge, the presented approach is the first predicate
abstraction based analysis which focuses on automated refinement of under-
approximations with the goal of efficient error detection. We illustrate the ap-
plication of the approach for checking safety properties in concurrent programs
and for testing container implementations.

Comparison with Related Work The most closely related work to ours is
that of Grumberg et al. [11] where a refinement of an under-approximation is
used to improve analysis of multi-process systems. The procedure in [11] checks
models with an increasing set of allowed interleavings of the given processes,
starting from a single interleaving. It uses SAT-based bounded model checking
for analysis and refinement, whereas here we focus on explicit model checking
and predicate abstraction, and we use weakest precondition calculations for ab-
straction refinement.

Our approach can be contrasted with the work on abstracting modal tran-
sition systems (see e.g. [19]) for the verification and refutation of branching
time temporal logic properties. An abstract model for such logics distinguishes
between may transitions, which over-approximate transitions of the concrete

model, and must transitions, which under-approximate the concrete transitions.
The method presented here explores and generates a structure which is more pre-
cise, i.e. contains more feasible behaviors, than the model defined by the must
transitions (for the same abstraction predicates). This is due to the fact that the
model checker explores transitions that correspond not only to must transitions,
but also to may transitions that are feasible (see discussion in Section 2).

Moreover, unlike [19] and over-approximation abstraction techniques [1,2],
the under-approximation and refinement approach does not require the a pri-
ori construction of the abstract transition relation, which involves exponentially
many theorem prover calls (in the number of predicates), regardless of the size of
(the reachable portion of) the analyzed system. In our case, the model checker ex-
ecutes concrete transitions and a theorem prover is only used during refinement,
to determine whether the abstraction is exact with respect to each executed
transition. Every such calculation makes at most two theorem prover calls, and
it involves only the reachable state space of the system under analysis. Another
difference with previous abstraction techniques, is that the refinement process
is not guided by the spurious counter-examples (since no spurious behavior is
explored). Instead, the refinement is guided by the failed exactness checks for
the explored transitions.

In previous work [17], we developed a technique for finding guaranteed feasi-
ble counter-examples in abstracted programs. The technique essentially explores
an under-approximation defined by the must abstract transitions (although the
presentation is not formalized in these terms). The work presented here explores
an under-approximation which is more precise than the abstract system defined
by the must transitions. Hence it has a better chance of finding bugs while en-
abling more aggressive abstraction and therefore more state space reduction.

Model-driven software verification [13] advocates the use of abstraction map-
pings during concrete model checking in a way similar to what we present here.
The CMC model checking tool [15] also attempts to store state information in
memory using aggressive compressing techniques (which can be seen as a form
of abstraction), while the detailed state information is kept on the stack. These
techniques allow the detection of subtle bugs which can not be discovered by
classical model checking (using e.g. breadth first search) or by state-less model
checking [8]. While these techniques use abstractions in an ad-hoc manner, our
work contributes the automated generation and refinement of abstractions.

Dataflow and type-based analyzes have been used to check safety prop-
erties of software (e.g. [20]). Unlike our work, these techniques analyze over-
approximations of system behavior and may generate false positive results due
to infeasible paths.

Layout The rest of the paper is organized as follows. Section 2 shows an exam-
ple illustrating our approach. Section 3 gives background information. Section 4
describes the main algorithm for performing concrete model checking with ab-
stract matching and refinement. Section 5 discusses correctness and termination
for the algorithm. Section 6 proposes extensions to the main algorithm. Section 7
illustrates applications of the approach and Section 8 concludes the paper.

(CY (b) (© (d) (C)

Fig. 1. (a) Concrete system (b) May abstraction using predicate p = z < 2 (¢) Must
abstraction using p (d) Concrete search with abstract matching using p (e) Concrete
search with abstract matching using predicates p and ¢ =z < 1.

2 Example

The example in Fig. 1 illustrates some of the main characteristics of our ap-
proach. Fig. 1 (a) shows the state space of a concrete system that has only one
variable x; states are labelled with the program counter (e.g. A, B, C ...) and
the concrete value of z. Fig. 1 (b) shows the abstract system induced by the
may transitions for predicate p = = < 2. Fig. 1 (c¢) shows the abstract system
induced by the must transitions for predicate p.

Fig. 1 (d) shows the state space that is explored using our proposed approach,
for an abstraction specified by predicate p. Dotted circles denote the abstract
states which are stored, and used for matching, during the concrete execution
of the system. The approach explores only the feasible behavior of the concrete
system, following transitions that correspond to both may and must transitions,
but it might miss behavior due to abstract matching. For example, the state
labelled by (E, 1) is not explored (assuming a breadth-first search), since (D, 0)
was matched with (D, 1) - both have the same program counter and both satisfy
p. Notice that, with respect to reachable states, the produced structure is a better
under-approximation than the must abstraction. Fig. 1 (e) illustrates concrete
execution with abstract matching, after a refinement step, which introduced a
new predicate ¢ = x < 1. The resulting structure is an exact abstraction of the
concrete system.

3 Background

Program Model To make the presentation simple, we use as a specification lan-
guage a guarded commands language over integer variables. Most of the results
extend directly to more sophisticated programming languages. Let V' be a finite
set of integer variables. Expressions over V' are defined using standard boolean
(=,<,>) and binary (+,—,-,...) operations. A model is a tuple M = (V,T).

T = {t1,...,t,} is a finite set of transitions, where t; = (g;(x) — x := e;(x)).
gi(x) is a guard and e;(x) are assignments to the variables represented by tuple
x; throughout the paper, we write this as a sequence of assignments.

Semantics As a semantics of a model we use transition systems. A transition
system over a finite set of atomic propositions AP is a tuple (S, R, sg, L) where

S is a (possibly infinite) set of states, R = {—=} is a finite set of deterministic

transition relations: —C S x S, s is an initial state, and L : § — 24P is a
labelling function. State s is reachable if it is reachable from the initial state
via zero or more transitions, i.e. s —=* s. The set of reachable labellings RL is
{L(s) | 3s € S : sp =* s}. The concrete semantics of model M is the transition

system C(M) = (S,{—=}, s0, L) over AP, where:

— 8§ =2V—Z e, states are valuations of variables

— 5 - 5" & s = g; Ns' = uy(s), where the semantics of an expression and
update is as usual, expressions are functions f=.: (V — Z) — {true, false},
written as e |= s; updates are functions u; : (V = Z) —» (V = Z).

— 8g is the zero valuation (Vv € V' : so(v) = 0)

— L(s)={p€ AP | s Ep}
Weakest precondition The weakest precondition of a set of states X with

respect to transition i is wp(X,i) = {s | s — s’ = s' € X}. If the set of states
X is characterized by a predicate ¢, then the weakest precondition with respect
to transition i can be expressed as wp(¢,i) = (9; = ¢lei(x)/x]).

Predicate abstraction Predicate abstraction is a special instance of the frame-
work of abstract interpretation [4] that maps a (potentially infinite state) tran-
sition system into a finite state transition system via a set of predicates & =
{#1,...,¢n} over the program variables. Let B,, be a set of bitvectors of length
n. We define abstraction function ag : S — B, such that ag(s) is a bitvector
biby ...b, such that b; = 1 < s |= ¢;. Let &, be the set of all abstraction pred-
icates that evaluate to true for a given state s, i.e., &; = {¢p € & | s | ¢}. For
succinctness we sometimes write as(s) (or just a(s)) to denote A cq, ¢-

We also give here the definitions of may and must abstract transitions. Al-
though not necessary for formalizing our algorithm, these definitions clarify the
comparison with related work. For two abstract states (bit vectors) a; and as:

— —ust: Q1 —>fnust ao iff for all concrete states s; such that a(s1) = ay,
there exists concrete state s such that a(sy) = ay and s; — 5
— —may: 01 —>lmay ay iff there exists concrete state s; such that a(s1) = a1
and there exists concrete state sz such that a(s2) = aa, such that s; AP
Algorithms for computing abstractions using over-approximation based pred-
icate abstraction are given in e.g. [1,9] (they compute may abstract transitions
automatically, with the help of a theorem prover). In the worst case, these algo-
rithms make 2" x n x 2 calls to the theorem prover for each program transition.

Note that our approach does not require the computation of abstract transitions,
since it executes directly the concrete transitions.

5

Bisimulation A symmetric relation R C S x S is a bisimulation relation iff for
all (s,s') € R:

— L(s) = L(s")
— For every s' — s there exists s — s1 such that R(sy, s}).

The bisimulation is the largest bisimulation relation, denoted ~. Two tran-
sition systems are bisimilar if their initial states are bisimilar.

As ~ is an equivalence relation, it induces a quotient transition system whose
states are equivalence classes with respect to ~ and there is a transition between

two equivalence classes A and B if ds; € A and dss € B such that s; -5 5.

4 Concrete Model Checking with Abstract Matching

Algorithm Fig. 2 shows the reachability procedure that performs model check-
ing with abstract matching (aSEARCH). It is basically concrete state space ex-
ploration with matching on abstract states; the main modification with respect
to classical state space search is that we store a(s) instead of s. The procedure
uses the following data structures:

— States is a set of abstract states visited so far
— Transitions is a set of abstract transitions visited so far
— Wait is a set of concrete states to be explored

The procedure performs validity checking, using a theorem prover, to deter-
mine whether the abstraction is ezact with respect to each explored transition
— see discussion below. &,,.,, maintains the list of abstraction predicates. The
procedure returns the computed structure and a set of new predicates, that are
used for refinement.

Fig. 3 gives the iterative refinement algorithm for checking whether M can
reach an error state described by ¢. At each iteration of the loop, the algorithm
invokes procedure aSEARCH to analyze an under-approximation of the system,
which either violates the property, it is proved to be correct (if the abstraction
is found to be exact with respect to all transitions), or it needs to be refined.

Checking for Exact Abstraction and Refinement We say that an ab-
straction function « is ezact with respect to transition s — s’ iff Vs; such that
a(s) = a(s1), 3s|, such that a(s}) = a(s') and s; — s,. In other words,
is exact with respect to s — s’ iff a(s) —must @(s') This definition is also
related to the notion of completeness in abstract interpretation (see e.g. [7]),
which states that no loss of precision is introduced by the abstraction.
Checking that the abstraction is exact with respect to concrete transition
s —» s' is equivalent to checking that as(s) = wp(as(s'),) is valid. This
formula is equivalent to as(s) = as(s')[ei(x)/z] when s = g;. Checking the
validity for these formulas is in general undecidable. As is customary, if the

proc aSEARCH(M, @)
Prew = P; add so to Wait; add as(so) to States
while Wait # () do
get s from Wait
L(ag(s)) ={a € AP | s = a}
foreach i from 1 to n do
if s = g; then
if as(s) = g¢; is not valid
then add g; to $Ppew fi
s’ = ui(s)
if as(s) = as(s')[ei(x)/x] is not valid
then add predicates in ae(s’)[ei(€)/] to Prew B
if as(s') ¢ States then
add s’ to Wait
add ae(s’) to States
fi
add (as(s),i,as(s’)) to Transitions
else
if as(s) = —g; is not valid
thﬂ add gi to Prew ﬁ

od
od
A = (States, Transitions, as(so), L)
return (A, Prew)
end

Fig. 2. Search procedure with checking for exact abstraction

theorem prover can not decide the validity of a formula, we assume that it is not
valid. This may cause some unnecessary refinement, but it keeps the correctness
of the approach. If the abstraction can not be proved to be exact with respect
to some transition, then the new predicates from the failed formula are added to
the set of abstraction predicates. Intuitively, these predicates will be useful for
proving exactness in the next iteration.

When updating &,,,, for refinement, it is sufficient to add only those con-
juncts of ag(s')[e;(x)/x] for which we cannot prove validity. Note that it is not
necessary to perform the validity check during model checking. In fact, our im-
plementation collects all the theorem prover queries and it runs the theorem
prover off-line. In this way, we also make sure that the theorem prover is not
called twice for the same query.

5 Correctness and Termination

In this section we discuss the properties of the refinement algorithm. We state
only the main theorems, technical lemmas and proofs are in the appendix (due to
space limitations). First, we show that the set RL(aSEARCH(M, ®)) of reachable

proc REFINEMENTSEARCH(M, ¢)
i=1 %, =10
while true do
(Ai, ¢i+1) = OzSEARCH(]W7 Qi)
if ¢ is reachable in A; then return counter-example fi
if #;1; = &; then return unreachable i
i=1+1
od
end

Fig. 3. Iterative refinement algorithm

labellings computed by the algorithm REFINEMENTSEARCH is a subset of the
reachable labelings of the system under analysis.

Theorem 1. Let AP C $. Then RL(aSEARCH(M,®)) C RL(C(M)).

Moreover, it holds that RL(aSEARCH(M,®)) is a superset of the reachable
labellings in the must abstraction (see Lemma 2 in Appendix), hence it is a
better approximation.

We now show that, if the iterative algorithm terminates then the result is
correct and moreover, if the error state is unreachable, the output structure is
bisimilar to the system under analysis:

Theorem 2. If REFINEMENTSEARCH(M,) terminates then:

— If it returns a counter-example, then it is a real error.
— If it returns "unreachable’, then the error state is indeed unreachable in M
and moreover the computed structure is bisimilar to C(M).

In general, the proposed algorithm might not terminate (because of the halt-
ing problem). However, the algorithm is guaranteed to eventually find all the
reachable labellings of the concrete program, although it might not be able to
detect that (to decide termination). Moreover, if the (reachable part of the) sys-
tem under analysis has a finite bisimulation quotient, then the algorithm will
eventually produce a finite bisimilar structure.

Theorem 3. Let the aSEARCH use breadth-first search order and let Ay, A, ...
be a sequence of tramsition systems generated during iterative refinement per-
formed by REFINEMENTSEARCH. Then

— There ezxits i such that RL(A;) = RL(C(M)).
— If the reachable part of the bisimulation quotient is finite, then there exists i
such that A; ~ C(M).

Discussion The search order used in aSEARCH (depth-first or breadth-first)
influences the size of the generated structure, the newly computed predicates,
and even the number of iterations of the main algorithm. If there are two states

s1 and sy such that as(s1) = as(s2) but s1 % s2 then, depending on whether
s1 Or sy is visited first, different parts of the transition system will be explored.

Also note that the refinement algorithm is non-monotone, i.e. a labelling
which is reachable in one iteration may not be reachable in the next iteration.
This is in conformance to the well known result that the set of must transitions is
not generally monotonically non-decreasing when predicates are added to refine
an abstract system. However, we should note that the algorithm is guaranteed
to converge to the correct answer.

We should also note that the proposed iterative algorithm is not guaranteed
to terminate even for a finite state program. This situation is illustrated by the
following example (the property we are checking is that pc = 2 is unreachable).

pc=0r—2:=0,y:=0,pc:=1
pc=1ANy>0—y:=y+zx
pc=1Ay<0+— pc:=2

Although the program is finite state (and therefore the problem can be easily
solved with classical explicit model checking), it is quite difficult to solve using
abstraction refinement techniques. The iterative algorithm will not terminate on
this example: it will keep adding predicates y > 0,y +z > 0,y + 2z > 0,....
Note that, in accordance with Theorem 3, it will eventually produce a bisimilar
structure. However, the algorithm will not be able to detect termination, and
it will keep refining indefinitely. The reason is that the algorithm keeps adding
predicates that refine the unreachable part of the system under analysis. Also
note that the same problem will occur with over-approximation based abstrac-
tion techniques that use refinement based on weakest precondition calculations
[2,16]. Those techniques will introduce the same predicates.

To solve this problem, we propose to use the following heuristic. If there is
a transition for which we cannot prove that the abstraction is exact in several
subsequent iterations of the algorithm, then we add predicates describing the
concrete state; i.e., in our example we would add predicates x = 0; y = 0. The
abstraction will eventually become exact with respect to each transition. And
since the number of reachable transitions is finite, the algorithm must terminate.

Lemma 1. If C(M) is finite state then the modified algorithm terminates.

6 Extensions

Lightweight Approach As mentioned, the under-approximation and refine-
ment approach can be used in a lightweight but systematic manner, without
using a theorem prover for validity checking. Specifically, for each explored tran-
sition ¢; refinement adds the new predicates from ag(s')[e;(x)/x], regardless of
the fact that the abstraction is exact with respect to transition ¢;. This approach
may result in unnecessary refinement. A similar refinement procedure was used
in [16] for automated over-approximation predicate abstraction.

We are also considering several heuristics for generating new abstraction
predicates. For example, it is customary to add the predicates that appear in

the guards and in the property to be checked. One could also add predicates
generated dynamically, using tools like Daikon [6], or predicates from known
invariants of the system (generated using static analysis techniques).

In order to extend the applicability of the proposed technique to the anal-
ysis of full-fledged programming languages, we are investigating shape abstrac-
tions [18], that record information about the shape of the program heap, to be
used in conjunction with the abstraction predicates. Section 7 shows an example
use of shape abstraction for the analysis of Java programs.

Transition Dependent Predicates The predicates that are generated after
the validity check for one transition are used ‘globally’ at the next iteration. This
may cause unnecessary refinement — the new predicates may distinguish states
which do not need to be distinguished. To avoid this, we could use ‘transition
dependent’ predicates. The idea is to associate the abstraction predicates with
the program counter corresponding to the transition that generated them. New
predicates are then added only to the set of the respective program counter.
However, with this approach, it may take longer before predicates are ‘propa-
gated’ to all the locations where they are needed, i.e. more iterations are needed
before an error is detected or an exact abstraction is found. We need to further
investigate these issues. Similar ideas are presented in [3], with the purpose of
minimizing the number of predicates for over-approximation based abstraction.

7 Applications

We have implemented our approach for the guarded command language. Our
implementation is done in the language Perl and it uses the Simplify theorem
prover [5]. We discuss the application of our implementation for two concurrent
programs: property verification for the Bakery mutual exclusion protocol and
error detection in RAX (Remote Agent Experiment), a component extracted
from an embedded spacecraft-control application.

These preliminary experiments show the merits of our approach. Of course,
much more experimentation is necessary to really assess the practical benefits
of the proposed technique and a lot more engineering is required to apply it to
real programming languages. We are currently doing an implementation in the
Java PathFinder (JPF) model checking framework [21] for the analysis of Java
programs (we use the Omega library as a decision procedure). We briefly discuss
at the end of this section the use of our approach for test-case generation for
Java container implementations.

The Bakery Mutual Exclusion Protocol We have analyzed several versions
of the Bakery mutual exclusion protocol (for two and more processes). These ver-
sions are infinite state but they have a finite bisimulation quotient. The guarded
command representation for a simplified version of the protocol is given in Fig. 4.

The mutual exclusion property is encoded as “pci = 3 A pce = 3 is unreach-
able”. We used our tool to successfully prove that the property holds. Fig. 5 gives
the intermediate results of the analysis. For each iteration, we report the number

10

(Process 1) (Process 2)

pc1=0r—x:=y,pc1 :=1 pc2=0+—y:=x,pc2 =1
paa=1lr—zx:=x+4+1pc1:=2 pea=1lr—y:=y+1pc:=2
pcr =2ANz <y+—pc =3 pea=2ANy<zx+—>pcy:=3
pcr =3 +—pcy =0 pca =3 —>pce =0

Fig. 4. Bakery example

Iteration|Concrete states|Abstract states New predicates
1 17 11 <y
2 18 12 c4+1<y,z<y+1,y>0
3 26 19 z+2<y,y>1,z<1
4 44 32 y<l,zxz<0,y>2
5 48 36 -

Fig. 5. Bakery example: intermediate results of the refinement algorithm

of generated concrete states, the number of stored abstract states and the newly
generated predicates. Note that we never abstract the program counter. The
reported results are for the breadth-first search order. For the depth-first search
order the algorithm requires only 4 iterations (see the discussion in Section 5).
The algorithm proceeds in similar way for the full version of the protocol.

RAX The RAX example (illustrated in Fig.6) is derived from the software used
within the NASA Deep Space 1 Remote Agent experiment, which deadlocked
during flight [22]. We encoded the deadlock check as “pc; = 4 Apca = 5 A
wi = 1 Aws = 1 is unreachable”. The error is found after one iteration, for
breadth-first search order; the reported counter-example has 8 steps. For depth-
first search order, the algorithm needs one more iteration to find the error, using
the predicates that appear in the guards ¢; = e; and ¢; = ey. Note that the
state space of the program is unbounded, as the program keeps incrementing
the counters e; and ey, when pco = 2 and pc; = 6, respectively. We also ran our
algorithm to see if it converges to a finite bisimulation quotient. Interestingly,
the algorithm does not terminate as it keeps adding predicates in a way similar
to the example presented in Section 5 (we report the results in the appendix).

Note that the application of over-approximation based predicate abstraction
to a Java version of RAX is described in detail in [22]. In that work, four differ-
ent predicates were used to produce an abstract model that is bisimilar to the
original program. In contrast, the work presented here allowed more aggressive
abstraction to recover feasible counter-examples.

In general, we believe that the technique presented here is complementary
to over-approximation abstraction methods and it can be used in conjunction
with such methods, as an efficient way of discovering feasible counter-examples.
We view the integration of the two approaches as an interesting research topic
for the future. Our technique explores transitions that are guaranteed to be
feasible in the state space bounded by the abstraction predicates. In contrast,
the over-approximation based methods may also explore transitions that are

11

(Process 1) (Process 2)

pci =1+—c1:=0,pc1 :=2 pca =1+ c2:=0,pca :=2

pci =2Ac1=e1—>pc1 =3 pca=2+—e1:=e1 + 1w :=0,pc2 :=3
pcrt =3 +— w1 :=1,pc1 =4 pca =3Ac2=e2+— pcy =4

pci =4ANw1 =0+—pc1:=5H pca =4 +— wa:=1,pca =5

pc1 =2Ac1 #£eir—rper:=5H pca =5Aw2 =0+ pcy :=6

pc1 =5+ c1:=e1,pct =6 pc2 =3ANc2F#ea—rpca =6

pci =6r+>er:=ex+1,wr:=0,pc1 :=2 pco =6+—>ca:=e2,pc2:=2

Fig. 6. RAX example

spurious and therefore could require additional refinement before reporting a real
counter-example. Hence, our technique can potentially finish in fewer iterations
and it can use fewer predicates (which enable more state space reduction), while
retaining the model checker’s capability of finding real bugs.

Testing We have used our preliminary implementation in the JPF model checker
to perform test case generation to achieve code coverage for Java container classes
(tree-map, linked-list, fibonacci-heap). Test cases are sequences of API calls, i.e.
method calls that add and remove elements in a container, to obtain for exam-
ple, branch coverage. The model checker analyzes all sequences of API calls up
to a predefined sequence size and uses abstraction mappings to match states
between API calls to avoid the generation of redundant tests. We used an ab-
straction recording the shape of the containers augmented with different predi-
cate abstractions on the data fields from each container element - two states are
matched if they represent containers that have the same shape and valuation
for the abstraction predicates. The behavioral coverage obtained in this fashion
is highly dependent on the different abstractions that are used. Therefore we
believe that the capability of generating and refining the abstractions automati-
cally is crucial for achieving good coverage. Although the work presented here is
only a first step towards this goal (the JPF implementation does not yet allow
automated refinement), we obtained better behavioral coverage than with ex-
haustive model checking. In fact, for some of the examples, exhaustive analysis
runs out of memory even before generating tests that cover all the reachable
branches in the code.

8 Conclusions and Future Work

We presented a novel model checking algorithm based on refinement of under-
approximations, which effectively preserves the defect detection ability of model
checking in the presence of powerful abstractions. The under-approximation is
obtained by traversing the concrete transition system and performing the state
matching on abstract states computed by predicate abstraction. The refinement
is done by checking exactness of abstractions with the use of a theorem prover.
We illustrated the application of the algorithm for checking safety properties of
concurrent programs and for testing container implementations. In the future,
we plan to extend the algorithm to checking liveness properties. We also plan to
do an extensive evaluation of our approach on real systems.

12

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for
Model Checking C Programs. In Proc. of TACAS’01, April 2001.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification of
Software Components in C. ACM Trans. Computer Systems, 30(6):388-402, 2004.
S. Chaki, E.Clarke, A. Groce, and O. Strichman. Predicate abstraction with min-
imum predicates. In 12th CHARME, 2003.

. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic

and Computation, 4(2):511-547, August 1992.

D. L. Detlefs, K. R. M. Leino, and J. B. Saxe G. Nelson. Extended Static Checking.
Research Report 159, Compaq Systems Research Center, 1998.

M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In Proc. of 22nd ICSE, 2000.

R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples and refine-
ments in abstract model checking. In Proc. 8th SAS, 2001.

P. Godefroid. Software Model Checking: the Verisoft Approach. Formal Methods
in Systems Design (to appear).

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc.
CAV, 1997.

W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state
machines from abstract state machines. In Proc. ISSTA, July 2002.

O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided
underapproximation-widening for multi-process systems. In Proc. 32nd POPL,
2005.

T. A. Henzinger, R. Jhala, R. Majumdar, and Gregoire Sutre. Lazy abstraction.
In Proc. POPL, pages pp. 58-70. ACM Press, 2002.

G. J. Holzmann and R. Joshi. Model-driven software verification. In Proc. 11th
SPIN Workshop, Barcelona, Spain, 2004.

D. Lee and M. Yannakakis. Online minimization of transition systems. In Proc.
24th ACM Symposium on Theory of Computing, 1992.

M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC:
A pragmatic approach to model checking real code. In Proc. 5th Symposium on
Operating Systems Design and Implementation, 2002.

K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for auto-
matic abstraction. In Proc. 12th CAV, 2000.

C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding Feasible Abstract Counter-
examples. STTT, 5(1):34-48, November 2003.

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. TOPLAS, 2002.

S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In Proc.
TACAS, Barcelona, Spain, 2004.

A. Venet and G. Brat. Precise and efficient static array bound checking for large
embedded c programs. In Proc. PLDI, 2004.

W. Visser, K. Havelund, G. Brat, S. J. Park, and F. Lerda. Model Checking
Programs. ASE Journal, 10(2), April 2003.

W. Visser, S. Park, and J. Penix. Applying predicate abstraction to model check
object-oriented programs. In 3rd ACM SIGSOFT Workshop on Formal Methods
in Software Practice, 2000.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for detecting redundant
object-oriented unit tests. In Proc. 19th ASE, Linz, 2004.

13

A Appendix

We provide here the proofs of several technical lemmas. The theorems in Sec-
tion 5 are direct consequences of these lemmas. We also give the results of running
the algorithm on RAX with the goal of computing a finite bisimilar system.

A.1 Technical Lemmas and Proofs

We use the following notation: a state s was wisited during the search if it was
inserted into Wait, that it is considered if it is generated as a successor of some
state in the foreach loop. State s is matched to state sy if the check ag(s1) &
States fails because ag(s;) = ag(s2) and s2 was inserted into States before.
We abuse the notation and sometimes we let aSEARCH(M,®) denote just the
structure A computed by the algorithm and not the tuple (A4, ®,.y). We say
that transition ¢; is exact if ag is exact with respect to it.

For the proofs, we need to refine the definition of bisimulation. A symmetric
relation R C S x S is a k-bisimulation relation iff:

— for all (s,s') € R: L(s) = L(s")
— if &k > 0 then there exists (k — 1)-bisimulation relation R’ such that for all
(5,5 €ER: (Vs - sy = 3s' — s A (s,8') € R')

The k-bisimulation is the largest k-bisimulation relation, denoted ~y.

Lemma 2. If a state s is reachable in C(M) via exact transitions with respect
to @, then there exists s' such that s' is visited during the aSEARCH(M, ®) and

ag(s) = ag(s').
Proof: By induction with respect to the number of exact transitions from the
initial state. Basic step (k = 0) is trivial. For the induction step, suppose that

state s is reachable via sequence of exact transitions: sg Loy 2 PRI
sk + 1 = s. By induction hypothesis there exists s}, such that s}, is visited and

as(s}) = as(sy). Because the abstraction is exact with respect to sy —= s,

there must be s’ such that s}, —*+ s’ and ag(s') = ag(s). This successor s’ was
considered during the visit of sj,. There are two cases to be considered.

— s' was added to Wait and later visited
— s’ was matched to a previously visited s” such that ag(s') = ag(s")

In any case we get that some state with the same ag(s) was previously visited.
Lemma 3. Let AP C ¢. Then RL(aSEARCH(M,®)) C RL(C(M))

Proof: It is easy to verify that the following is an invariant of the search: 'States’
is a subset of reachable states in C(M).

Lemma 4. Let AP C &. If for all reachable states s1, 82 : ag(s1) = as(s2) =
$1 ~ Sz, then aSEARCH(M, ®) ~ C(M).

14

Proof: Consider relation R defined as: s; Rss iff s = sy or s; was matched to

S92.

It is easy to verify that R is a bisimulation relation between aSEARCH(M, ®)

and C(M).
Lemma 5. Let (A, Ppew) = aSEARCH(M, D). If Ppey = P, then A ~ C(M).

Proof: Due to Lemma 4 it is sufficient to show that ag induces a bisimulation
relation on the reachable part of the transition system. We proceed by contradic-
tion. Suppose that there exists reachable states s1, s5 such that ag(s1) = ag(s2)

and there exists s; — s, such that so — s, and a(s}) # a(s}). This means

that ag is not exact with respect to s; LN sh.

Let us consider such an s; which is closest to initial state. This state must be

reachable only via exact transitions. According to Lemma 2 some state s such
that a(s) = a(s1) was visited during the search. During the visit of the state s

we check whether the abstraction is exact for transition s — s'. Since it is not
exact, some of the implications is not valid and therefore ®,,,, is updated and
thus @ # &,,.,, and that is the contradiction.

Lemma 6. Let {A;}32, be a sequence of transition systems generated during
an infinite run of REFINEMENTSEARCH and Inf ,; = {s | there exists infinitely
many i such that s € A;}. If s £ ' and s € Inf y; then there exists i such that

QAop; (8) # Ap; (sl)'
Proof: We prove by induction with respect to k where k is the smallest number
such that s #, s'. Basic step: for k = 0 it means that L(s) # L(s") and therefore

ag, (8) # ag, (s'). Induction step (k+1): Let s1, s, be such that s — s1,s' —
s} and s1 #k si. Then one of the following must hold:

1.

2.

State s1 € Inf ;. Then we can apply induction hypothesis, i.e., eventually
ap; (81) 7é Ay, (Sll)

State s1 is matched to some state in infinitely many runs of aSEARCH. Since
we use breadth-first order, there are only finitely many states to which it can
be matched. Therefore, there exists a state sy such that s; is matched to s,
in infinitely many runs of aSEARCH. From induction hypothesis we get that
s2 #p s} and that eventually ag,(s2) # ag,(s]). Because s; is matched to
sy infinitely often we eventually get also ag,(s1) # e, (s]) for some j > i.

This means that ag, is not exact with respect to s N s1, therefore wp(as, (s1),ti)

will be included in @;;; and therefore ag,,,(s1) # e, (51)-

Lemma 7. For each reachable bisimulation class B there exists a state s € B
such that s is visited by REFINEMENTSEARCH.

Proof: By induction with respect to the length of the shortest path in which
state from B is reachable. Base step is obvious. Induction step: let state from
B be reachable via path sg,..., sk, sg+1. By induction hypothesis some state
s' ~ s, is reached during the search. And with the use of Lemma 6 we get that
some s" ~ sp41 is reached.

15

Iteration|Concrete states|Abstract states| New predicates
1 56 35 c1 =e1,C2 =e€2
2 68 44 e1 =0,e2 =0
3 100 65 e1=—1,es=-1
4 100 65 e1 = —2,ep = —2
5 100 65

Fig. 7. RAX example: intermediate results of the refinement algorithm

Lemma 8. Let {A4;}°, be a sequence of transition systems generated during an
infinite Tun of REFINEMENTSEARCH(M,). There exits i such that RL(A;) =
RL(C(M)).

Proof: For each I € RL(C(M)) we choose some bisimulation class B such that
s € B = L(s) = l. In this way we obtain a finite set of bisimulation classes
{Bi,...,Bx} which “covers” RL(C(M)) (note that RL(C(M)) is finite because
AP is finite). Now we show that there exists an iteration in which at least one
state from each of these classes is visited. This is done similarly to the proof of
Lemma 7.

Lemma 9. Let {A;}°, be a sequence of transition systems generated during
an infinite run of REFINEMENTSEARCH. If the reachable part of bisimulation
quotient is finite, then there exists i such that A; ~ C(M).

Proof: By contradiction. Suppose that Vi : 4; £ C(M). From Lemma 4 we get
that there exists reachable s, s’ such that Vi : ag,(s) = ag,(s') and s £ s'. We
show (similarly to the proof of Lemma 2) that there exists such s which is visited
infinitely often. From Lemma 6 we get that eventually ag, (s) # ag,(s") which is
the contradiction.

A.2 RAX example: intermediate results of the refinement algorithm

As mentioned, the RAX example has a deadlock, which is detected by our algo-
rithm after the first iteration. As the program is infinite state, we also tried to use
the algorithm to compute a finite bisimilar structure. Interestingly, the algorithm
does not terminate for the RAX example (although it has a finite bisimulation
quotient). The results are shown in Figure 7 (breadth-first search order). How-
ever, if we assume that the counters in the program are non-negative, i.e if we
introduce two new predicates, el > 0, €2 > 0, then the algorithm terminates
after three iterations.

16

